3D-PAWS Manual
Downloads
English
English
  • Introduction
    • System Cost
    • Calibration and Data Quality Assessment
  • 3D-Printed Automatic Weather Station
    • 1. Light Sensor (End of Life)
    • 2. Rain Gauge Assembly
    • 3. Rain Gauge Calibration
    • 4. Rain Gauge Screen
    • 5. Anemometer
    • 6. Wind Vane Assembly - Digital Sensor
    • 7. Wind Vane - Alignment
    • 8. Radiation Shield Wiring
    • 9. Radiation Shield Assembly
    • Testing the Sensors
    • 10a. Data Logger - Particle
    • 10b. Data Logger - Raspberry Pi
    • 11. Solar Panel Support
    • 12. Building the Weather Station
    • 13. Siting the Station
    • Station Maintenance
  • Additional Instruments
    • Stream/Storm Surge Gauge
    • Snow Gauge
    • Air Quality
    • Black Globe
  • Data Loggers
    • Particle IoT
    • Raspberry Pi
      • Software Image
    • Adafruit Feather M0
  • Data Access and Visualization
    • CHORDS
    • Grafana
    • Particle / CHORDS Integrations
  • Downloads
    • 3D Printing Files
    • Current Full Manual (PDF version)
    • Materials and Tools
    • Rain Gauge Calibration Spreadsheet
  • Other 3D-PAWS Resources
    • Online Instrumentation Course
    • Previous Manual Versions
      • 3D-PAWS Manual 2022 (Qwiic cables)
      • 3D-PAWS Manual 2020
  • Helpful Videos
  • 3D-PAWS User Forum
  • Terms of Use
  • About Us
Powered by GitBook
On this page

Was this helpful?

Export as PDF
  1. 3D-Printed Automatic Weather Station

Testing the Sensors

Manual for testing the sensors on a Raspberry Pi

Previous9. Radiation Shield AssemblyNext10a. Data Logger - Particle

Last updated 2 months ago

Was this helpful?

Before installing instruments on the weather station, it’s crucial to test all sensors to ensure they’re working correctly. This can be done using a Raspberry Pi equipped with a Grove Base Hat, which provides easy connections for various sensors. The , available on GitHub, simplifies the testing process by handling sensor data acquisition and communication. By following this setup, you can validate sensor functionality and accuracy in a controlled environment before deploying them in the field.

Instruction Slides

3D-PAWS software